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EFFECT OF A PRECOMPRESSED SPRING ON THE

DISCONTINUITY ZONE AROUND A CYLINDRICAL CAVITY

UDC 622.241.54:539.3S. V. Cherdantsev and N. V. Cherdantsev

This paper discusses the use of a cylindrical spring to increase the stability of a tunnel of circular
cross section.

Key words: stress state, discontinuity zones, stability of a mine tunnel, support, cylindrical
spring.

In designing and constructing mine tunnels, the most important is the problem of their stability. A tunnel is
considered stable if discontinuity zones are not formed in the surrounding massif behind its contour (or these zones
small). If a tunnel is constructed at a shallow depth and in fairly strong rock, discontinuity zones, as a rule, do not
arise behind its contour. If the rock is weak, the dimensions of the discontinuity zones can be rather large and the
tunnel can lose stability, resulting in rock caving. The stability of a tunnel depends on the stress state of the rock
massif in the vicinity of the tunnel and the strength properties of the rock.

The problem of the stress state around a tunnel is formulated as follows [1]: an infinite elastic massif is
subjected to the stress σ∞33 = γH along the x3 axis and by the stress σ∞11 = σ∞22 = ΛγH in the horizontal direction
along the x1 and x2 axes; here Λ is the lateral pressure factor; γ is the bulk density of the rock of the massif, and
H is the tunnel depth. The specified tunnel is modeled by a cavity inside the massif, whose surface (or any of its
part) is subjected from inside to the forces F produced by the reaction of the support. The formulated problem is
solved using the method of boundary integral equations, which consists of the following [2]. A compensating load of
intensity a is applied to the surface of the cavity. At each point of the cavity, the total stresses from the action of the
external and compensating loads should satisfy the conditions on the surface. The stresses from the compensating
load are determined by integrating Calvin’s solution over the cavity surface. As a result, the conditions on the
surface are reduced to the integral equation [2]

1
2

aq(Q0)−
∫∫
O

Φqm(Q0,M0)am(M0) dOM0 = nq(Q0)σ∞qq − Fq(Q0), (1)

where Φqm(Q0,M0) is Green’s tensor, Fq(Q0) is the reactive response of the support referred to γH, σ∞qq is the
stress tensor at infinity, O is the surface area of the cavity, nq and nm are the unit vectors of the outward (to the
cavity surface) normals at the points Q0 and M0.

Equation (1) was solved numerically subject to the condition that the tunnel has a circular cross section and
has no support [Fq(Q0) = 0]. The discontinuity zone around the tunnel is defined as the set of points at which rock
breaking occurred according to Mohr’s strength criterion:

τ̄ν = σ̄ν tan ϕ + K̄.

Here τ̄ν and σ̄ν are the dimensionless shear and normal stresses referred to γH and acting on the sites with a
normal ν on which rock breaking occurs, K̄ is the rock jointing factor, also referred to γH, and ϕ is the internal
friction angle of the rock. In the following, it is assumed that the massif is isotropic and its rocks have K̄ = 0.25
and ϕ = 20◦ and are in a hydrostatic stress field (Λ = 1).
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Fig. 1. Discontinuity zone around an unsupported tunnel.
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Fig. 2. Geometrical parameters of the cylindrical spring.

Figure 1 shows (in axonometry) a circular tunnel of length L and discontinuity zones (darkened areas) in
the cross sections located at distances 0.5L (a), 0.375L (b), 0.25L (c), and 0.125L (d) from the tunnel face. It is
evident that the discontinuity zones around the unsupported tunnel in this case is a region bounded by the external
circular contour and the tunnel contour.

The stability of tunnels is usually increased using various types of support. As a rule, the supports are
enclosing or bearing structures. They do not influence the formation of discontinuity zones since they do not
produce a reactive response [Fq(Q0) = 0]. In this sense, such supports are passive structures. An anchor-type
support can influence the dimensions of the discontinuity zones due by increasing the anchor tension and, hence,
it is active. In the present paper, we discuss the possibility of increasing the stability of tunnels of circular cross
section using a precompressed cylindrical spring.

For a cylindrical spring (see Fig. 2) made of a rod of circular cross section of length l whose material obeys
Hooke’s law, the stress–strain state is described by the following system of differential equations in a coupled system
of axes [3]:
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dQ1

ds
− æ30Q2 −

1
A33

M3Q2 +
1

A22
M2 Q3 + q1 = 0; (2a)

dQ2

ds
+ æ30Q1 − æ10Q3 +

1
A33

M3Q1 −
1

A11
M1Q3 + q2 = 0; (2b)

dQ3

ds
+ æ10Q2 −

1
A22

M2Q1 +
1

A11
M1Q2 + q3 = 0; (2c)

dM1

ds
− æ30M2 = 0; (2d)

dM2

ds
+ æ30M1 − æ10M3 +

1
A33

M3M1 −
1

A11
M1M3 −Q3 = 0; (2e)

dM3

ds
+ æ10M2 −

1
A22

M2M1 +
1

A11
M1M2 + Q2 = 0; (2f)

dθ1

ds
+

(
1− cos θ2

cos θ3

)
æ10 +

(
sin θ1 tan θ3 −

sin θ2

cos θ3

)
æ30

− 1
A11

M1
cos θ2

cos θ3
− 1

A33
M3

sin θ2

cos θ3
= 0; (2g)

dθ2

ds
− æ10 cos θ2 tan θ3 +

( sin θ1

cos θ3
− sin θ2 tan θ3

)
æ30

− 1
A11

M1 cos θ2 tan θ3 −
1

A22
M2 −

1
A33

M3 sin θ2 tan θ3 = 0; (2h)

dθ3

ds
+ æ10 sin θ2 + (cos θ1 − cos θ2)æ30 +

1
A11

M1 sin θ2 −
1

A33
M3 cos θ2 = 0; (2i)

du1

ds
− æ30u2 −

1
A33

M3u2 +
1

A22
M2u3 + cos θ2 cos θ3 − 1 = 0; (2j)

du2

ds
+ æ30u1 − æ10u3 +

1
A33

M3u1 −
1

A11
M1u3 − sin θ3 = 0; (2k)

du3

ds
+ æ10u2 −

1
A22

M2u1 +
1

A11
M1u2 + sin θ2 cos θ3 = 0. (2l)

Here Q1, Q2, and Q3 are the longitudinal and shearing forces in the cross section of the rod from which the spring
is made, M1, M2, and M3 are the torsional and flexural moments in the same cross section of the rod, A11, A22,
and A33 are the twisting and flexural rigidities of the rod cross section, θ1, θ2, and θ3 are the rotation angles of
the axial line of the rod about the rod axis, its main normals, and binormals, respectively, u1, u2, and u3 are
the displacements along the rod axis, the main normal, and the binormal, respectively, and q1, q2, and q3 are the
components of the external load distributed along the rod length. The torsion æ10 and curvatures æ20 and æ30 of
the axial line of the rod in the natural state are defined as follows [4]:

æ10 = sinα cos α/R, æ30 = cos2 α/R, æ20 = 0. (3)

Here R is the radius of the undeformed spring and α is the angle of lead of its coils. Since the spring material
operates in the elastic stage, the following formulas are valid:

M1 = A11(æ1 − æ10), M2 = A22(æ2 − æ20), M3 = A33(æ3 − æ30) (4)

(æ1, æ2, and æ3 are the torsion and curvature components of the axial line of the deformed rod).
Let a cylindrical shell of circular cross section of radius R be supported by a cylindrical spring of the same

radius and is uniformly compressed by the quantity ∆. In this case, the value of the displacement u2 in the rod
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is constant and equal to the shell compression ∆. Let the spring ends be not fixed; then, their displacements are
obviously symmetric about the point located at the middle of the rod and the middle point itself does not move.
Hence, if the coordinate origin is made coincident with this point, the displacements u1 and u3 and the rotation
angle θ1 at the coordinate origin are equal to zero:

u1(0) = 0, u3(0) = 0, θ1(0) = 0. (5)

Since the shell remains a circular cylinder after the uniform compression, the spring inside the shell also
retains a cylindrical shape after deformation. Therefore, the rotation angle θ3 = 0 and Eqs. (2g)–(2l) become

dθ1

ds
+ (1− cos θ2)æ10 − æ30 sin θ2 −

1
A11

M1 cos θ2 −
1

A33
M3 sin θ2 = 0; (6a)

dθ2

ds
+ æ30 sin θ1 −

1
A22

M2 = 0; (6b)

æ10 sin θ2 + (cos θ1 − cos θ2)æ30 +
1

A11
M1 sin θ2 −

1
A33

M3 cos θ2 = 0; (6c)

du1

ds
− æ30u2 −

1
A33

M3u2 +
1

A22
M2u3 + cos θ2 − 1 = 0; (6d)

æ30u1 − æ10u3 +
1

A33
M3u1 −

1
A11

M1u3 = 0; (6e)

du3

ds
+ æ10u2 −

1
A22

M2u1 +
1

A11
M1u2 + sin θ2 = 0. (6f)

By virtue of formulas (4), Eq. (6a) implies the equation

dθ1

ds
+ æ10 − æ1 cos θ2 − æ3 sin θ2 = 0, (7)

in which the torsion æ1 and curvature æ3 of the cylindrical spring after its compression can be defined by formulas (3):

æ1 = sinα1 cos α1/R1, æ3 = cos2 α1/R1, (8)

where α1 and R1 = R − u2 are the angle of lead of the spring coils and the spring radius after the compression.
Taking into account formulas (8), we write Eq. (7) as

dθ1

ds
+ æ10 −

cos α1 sin(α1 + θ2)
R(1− ū2)

= 0, (9)

where ū2 = u2/R is the dimensionless value of the compression.
Next, using formulas (4) and (8), we write Eq. (6c) as

æ30 cos θ1 − cos α1 cos(α1 + θ2)/(R(1− ū2)) = 0. (10)

Simultaneous solution of Eqs. (9) and (10) yields

dθ1

ds
+ æ10 − æ30 tan (α1 + θ2) cos θ1 = 0. (11)

We note that after the deformation, the angle of lead of the spring coils α1 is the algebraic sum of the angle of lead
of the coils α of the undeformed spring and the rotation angle θ2 about the principal normal:

α1 = α− θ2. (12)

With allowance for formula (12), Eq. (11) becomes

dθ1

ds
− (cos θ1 − 1)æ10 = 0.

By virtue of the third boundary condition (5) and the solution uniqueness theorem, its solution is trivial:

θ1 = 0. (13)
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Equation (10) and formulas (12) and (13) imply the equation

ǣ30(1− ū2)− cos(α− θ2) cos α = 0 (14)

(ǣ30 = æ30R), from which it follows that θ2 = const.
Equation (14) is brought to the form

tan 2 θ2 − a tan θ2 + b = 0, (15)

where

a =
2 tan α

(1− ū2)2 − tan 2 α
, b =

(1− ū2)2 − 1
(1− ū2)2 − tan 2 α

.

Equation (15) has two roots — θ2(1) and θ2(2). One root (negative) corresponds to the right coiling of the spring
(æ10 > 0), and the other (positive) root to the left coiling (æ10 < 0). Below, we consider the spring with right
coiling. Taking into account that θ1 = 0 and θ2 = const, from Eqs. (6a)–(6c) we obtain the following expressions
for the moments in dimensionless form:

M̄1 = M1R/A11 = ǣ10 cos θ2 − ǣ30 sin θ2 − ǣ10, M̄2 = 0,

M̄3 = M3R/A33 = ǣ10 sin θ2 + ǣ30 cos θ2 − ǣ30.

Here ǣ10 = æ10R, ǣ30 = æ30R is the dimensionless torsion and curvature of the axial line of the spring.
Taking into account that the moments M1 and M3 are constant and M2 = 0, from Eqs. (2e) and (2f) we

find the internal forces Q2 and Q3 in the compressed spring (in dimensionless form):

Q2 = 0, Q̄3 = Q3R
2/A11 = ǣ30 M̄1 −mǣ10M̄3 + M̄1M̄3(1−m)

(m = A33/A11).
Next, writing Eqs. (2a)–(2c) in dimensionless form, we have

dQ̄1

ds̄
λ̄ + q̄1 = 0; (16a)

(ǣ30 + M̄3)Q̄1 − (ǣ10 + M̄1)Q̄3 + q̄2 = 0; (16b)

q3 = 0 (16c)

where λ̄ = cos α, s̄ = sλ̄/R is a dimensionless coordinate, and the dimensionless components of the distributed
external load are defined as

q̄i = qiR
3/A11. (17)

Since q3 = 0, system (16) reduces to two equations which contain three unknown functions Q̄1, q̄1, and q̄2,
and, hence, it is indeterminate. To eliminate this indeterminacy, we use Coulomb’s hypothesis

q̄1 = f q̄2, (18)

in which the friction force is the component q1 and f is the coefficient of rod friction on the shell (below, f = 0.55).
Since the direction of the friction force q1 is opposite to the displacement u1, its value in Eq. (16a) should be
negative. In view of the aforesaid, system (16) becomes

dQ̄1

ds̄
λ̄− f q̄2 = 0; (19a)

(ǣ30 + M̄3)Q̄1 − (ǣ10 + M̄1)Q̄3 + q̄2 = 0. (19b)

Eliminating q̄2 from (19), we obtain the differential equation

dQ̄1

ds̄
+ kQ̄1 − β = 0, (20)

where

k = f(ǣ30 + M̄3)/λ̄, β = f(ǣ10 + M̄1)Q̄3/λ̄.
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Fig. 3. Distribution of the response Fq(Q0) along the axis of the spring coil.
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Fig. 4. Discontinuity zone around the supported tunnel.
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Since the spring ends are free, the longitudinal force in the end sections is
Q̄1(l̄/2) = 0. (21)

Expression (21) is the boundary condition for the differential equation (20), whose solution in this case has the form
Q̄1 = β(1− e−k(s̄−0.5l̄))/k. (22)

Next, from Eq. (16a) and formulas (18), we obtain q̄1:

q̄1 =
dQ̄1

ds̄
λ̄ =⇒ q̄1 = λ̄β e−k(s̄−0.5l̄), (23)

and from Eq. (19b), the distributed load is
q̄2 = (ǣ10 + M̄1)Q̄3 − (ǣ30 + M̄3)Q̄1. (24)

Thus, for uniform compression of the cylindrical spring, it should be subjected to a nonuniform external load
whose components are defined by formulas (23) and (24). If the uniformly compressed cylindrical spring is placed
in a tunnel of circular cross section, the latter produces a reactive response that acts on the surrounding massif and
is defined as

Fq(Q0) = q2/(LγH). (25)
Here L = hn is the length of the spring, h = 2πR tan α is the intercoil distance, and n is the number of coils.

In our opinion, it is reasonable to use a spring consisting of several coils joined to one another rather than
a continuous spring. The fact is that in a continuous spring, the maximum response (which is greater than that in
the coils of a compound spring) arises in its middle. With distance from the middle, the response decreases sharply.
In a compound spring, each coil produces the same response whose value is maximal in the middle of the coil and
decreases somewhat at its ends. Therefore, each coil of the compound spring needs to be established in such a
manner that its ends are in the tunnel floor and the middle is in the roof.

In view of the aforesaid, in formula (25) one need to adopt L = h, setting n = 1. Next, by virtue of (17),
Eq. (25) is brought to the form

Fq(Q0) = 0.1q̄2d̄
4/(2πγH tan α),

where γH = γH/E (E is Young’s modulus of the spring material) and d̄ = d/R is the dimensionless diameter of
the rod from which the spring is manufactured.

Let a compound spring precompressed by ū2 = 0.1 and containing eight coils be placed in a tunnel at depth
H = 400 m in a rock massif with γ = 25 kN/m3. The coils of the spring are made of a rod of circular cross
section d̄ = 0.1 with a lead angle α = 5◦. In this case, each coil of the spring produces a response Fq(Q0), whose
distribution along the coil axis is shown in Fig. 3. The effect of the response of the spring coils on the dimensions
of the discontinuity zone is given in Fig. 4, which shows the discontinuity zones in the same sections of the tunnel
in which they were previously determined around the unsupported tunnel (see Fig. 1). It is evident that the
discontinuity zone has the shape of a horseshoe symmetric about the vertical, whose open ends are located in the
tunnel arch, where there is the greatest response of the spring coils. In this case, the discontinuity zone decreases
by 14.7% in the tunnel roof and by 7.6% in the floor compared to the discontinuity zone around the unsupported
tunnel and the decrease occurs uniformly along the tunnel axis. These results were obtained in the presence of only
the force q̄2 since the force q̄1 has almost no effect on the dimension of the discontinuity zone and only breaks its
symmetry.

Thus, a precompressed cylindrical spring placed in a tunnel raises its stability and, hence, can be used as a
support.
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